The Long-Term Impacts of Teachers: Teacher Value-Added and Students’ Outcomes in Adulthood

Raj Chetty, Harvard
John N. Friedman, Harvard
Jonah Rockoff, Columbia

March 2014
How can we measure and improve the quality of teaching in elementary schools?

- Rate teachers based on their students’ test score gains

School districts have started to use VA to evaluate teachers, leading to considerable debate

- Ex: Washington D.C. lays off teachers and offers bonuses using a metric that puts 50% weight on VA measures
- Lawsuit in LA based on VA measures
Debate About Teacher Value-Added

Debate stems primarily from two intellectual issues:

1. Disagreement about whether VA measures are biased
 [Kane and Staiger 2008, Rothstein 2010]
 - Do differences in test-score gains across teachers capture causal impacts of teachers or are they driven by student sorting?
 - If VA estimates are biased, they will incorrectly reward or penalize teachers for the mix of students they get

2. Lack of evidence on teachers’ long-term impacts
 - Do teachers who raise test scores improve students’ long-term outcomes or are they simply better at teaching to the test?
Objectives of This Project

- This study answers these two questions by tracking one million children from childhood to early adulthood
 - Develop new quasi-experimental tests for bias in VA estimates
 - Test whether children who get high VA teachers have better outcomes in adulthood

- Results also shed light on broader issues in the economics of education
 - What are the long-run returns to investments in better teaching?
 - Are impacts on scores a good proxy for long-term impacts of educational interventions?
Outline

1. Data
2. Construction of Value-Added Estimates with Drift
3. Evaluating Bias in Value-Added Estimates
4. Long-Term Impacts
5. Policy Implications
Teacher and class assignments from 1991-2009 for 2.5 million children

Test scores from 1989-2009

- Scaled scores standardized by grade and subject (math/reading)
- 18 million test scores, grades 3-8

Exclude students in special ed. schools and classrooms (6% of obs.)
Selected data from U.S. federal income tax returns from 1996-2010

Includes non-filers via information forms (e.g. W-2’s)

Student outcomes: earnings, college, teenage birth, neighborhood quality

Parent characteristics: household income, 401k savings, home ownership, marital status, age at child birth

Omitted variables from standard VA models

Approximately 90% of student records matched to tax data

Data were analyzed as part of a broader project on tax policy

Research based purely on statistics aggregating over thousands of individuals, not on individual data
Data Structure

<table>
<thead>
<tr>
<th>Student</th>
<th>Subject</th>
<th>Year</th>
<th>Grade</th>
<th>Class</th>
<th>Teacher</th>
<th>Test Score</th>
<th>Age 28 Earnings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raj</td>
<td>Math</td>
<td>1992</td>
<td>4</td>
<td>1</td>
<td>Samuelson</td>
<td>0.5</td>
<td>$22K</td>
</tr>
<tr>
<td>Raj</td>
<td>English</td>
<td>1992</td>
<td>4</td>
<td>1</td>
<td>Samuelson</td>
<td>1.3</td>
<td>$22K</td>
</tr>
<tr>
<td>Raj</td>
<td>Math</td>
<td>1993</td>
<td>5</td>
<td>2</td>
<td>Solow</td>
<td>0.9</td>
<td>$22K</td>
</tr>
<tr>
<td>Raj</td>
<td>English</td>
<td>1993</td>
<td>5</td>
<td>2</td>
<td>Solow</td>
<td>0.1</td>
<td>$22K</td>
</tr>
<tr>
<td>Raj</td>
<td>Math</td>
<td>1994</td>
<td>6</td>
<td>3</td>
<td>Arrow</td>
<td>1.5</td>
<td>$22K</td>
</tr>
<tr>
<td>Raj</td>
<td>English</td>
<td>1994</td>
<td>6</td>
<td>4</td>
<td>Stigler</td>
<td>0.5</td>
<td>$22K</td>
</tr>
</tbody>
</table>

- One observation per student-subject-year
<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Data:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class size (not student-weighted)</td>
<td>28.2</td>
<td>5.8</td>
</tr>
<tr>
<td>Test score (SD)</td>
<td>0.12</td>
<td>0.91</td>
</tr>
<tr>
<td>Female</td>
<td>50.4%</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>11.7</td>
<td>1.6</td>
</tr>
<tr>
<td>Free lunch eligible (1999-2009)</td>
<td>77.1%</td>
<td></td>
</tr>
<tr>
<td>Minority (Black or Hispanic)</td>
<td>72.1%</td>
<td></td>
</tr>
<tr>
<td>English language learner</td>
<td>4.9%</td>
<td></td>
</tr>
<tr>
<td>Special education</td>
<td>3.1%</td>
<td></td>
</tr>
<tr>
<td>Repeating grade</td>
<td>2.7%</td>
<td></td>
</tr>
<tr>
<td>Number of subject-school years per student</td>
<td>6.25</td>
<td>3.18</td>
</tr>
<tr>
<td>Student match rate to adult outcomes</td>
<td>89.2%</td>
<td></td>
</tr>
<tr>
<td>Student match rate to parent chars.</td>
<td>94.8%</td>
<td></td>
</tr>
<tr>
<td>Variable</td>
<td>Mean (1)</td>
<td>S.D. (2)</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Adult Outcomes:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual wage earnings at age 20</td>
<td>5,670</td>
<td>7,773</td>
</tr>
<tr>
<td>Annual wage earnings at age 25</td>
<td>17,194</td>
<td>19,889</td>
</tr>
<tr>
<td>Annual wage earnings at age 28</td>
<td>20,885</td>
<td>24,297</td>
</tr>
<tr>
<td>In college at age 20</td>
<td>35.6%</td>
<td></td>
</tr>
<tr>
<td>In college at age 25</td>
<td>16.5%</td>
<td></td>
</tr>
<tr>
<td>College Quality at age 20</td>
<td>26,408</td>
<td>13,461</td>
</tr>
<tr>
<td>Contribute to a 401(k) at age 25</td>
<td>19.1%</td>
<td></td>
</tr>
<tr>
<td>ZIP code % college graduates at age 25</td>
<td>13.7%</td>
<td></td>
</tr>
<tr>
<td>Had a child while a teenager (for women)</td>
<td>14.3%</td>
<td></td>
</tr>
<tr>
<td>Parent Characteristics:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Household income (child age 19-21)</td>
<td>40,808</td>
<td>34,515</td>
</tr>
<tr>
<td>Ever owned a house (child age 19-21)</td>
<td>34.8%</td>
<td></td>
</tr>
<tr>
<td>Contributed to a 401k (child age 19-21)</td>
<td>31.3%</td>
<td></td>
</tr>
<tr>
<td>Ever married (child age 19-21)</td>
<td>42.2%</td>
<td></td>
</tr>
<tr>
<td>Age at child birth</td>
<td>28.3</td>
<td>7.8</td>
</tr>
<tr>
<td>Predicted Score</td>
<td>0.17</td>
<td>0.26</td>
</tr>
</tbody>
</table>
Constructing Value-Added Estimates

- Simplest case: teachers teach one class per year with \(N \) students

- All teachers have test score data available for \(t \) previous years

- Objective: predict test scores for students taught by teacher \(j \) in year \(t+1 \) using test score data from previous \(t \) years
Three steps to estimate VA in year $t+1$

1. Form residual test scores, controlling for observables

 Regress test scores A_{is} on observable student characteristics X_{is}, including prior test scores $A_{i,s-1}$ using within-teacher variation

2. Regress mean class-level test score residuals in year t on class-level test score residuals in years 0 to $t-1$

3. Use estimated coefficients $\psi_1, ..., \psi_t$ to predict VA in year $t+1$ based on mean test score residuals in years 1 to t for each teacher j

Paper generalizes this approach to allow for variation in numbers of students and classes across teachers
Practical complications: number of students varies across classes, number of years varies across teachers, multiple classes per year in middle school

Generalize regression approach by estimating an autocorrelation vector and assume stationarity of teacher VA process

Then form a prediction for VA in each teacher-year using data from all other years using autocorrelation vector

STATA ado file to implement this procedure on the web
Two special cases:

1. Forecast VA in year t using data from only year $t-s$:

 $$\hat{\mu}_{jt} = r_s \bar{A}_{j,t-s} \text{ where } r_s = \text{Corr}(\bar{A}_t, \bar{A}_{t-s})$$

2. Without drift, put equal weight on all prior scores. Formula collapses to standard shrinkage estimator [e.g., Kane and Staiger 2008]

 $$\hat{\mu}_{jt} = \bar{A}_{j}^{-t} \frac{\sigma_{\mu}^2}{\sigma_{\mu}^2 + (\sigma_\theta^2 + \sigma_\varepsilon^2/n)/T}$$
Autocorrelation Vector in Elementary School for English and Math Scores

Years Between Classes

Correlation (r_s)

English Math
Empirical Distribution of Estimated Teacher Effects in Elementary School

SD for English = 0.080
SD for Math = 0.116
Autocorrelation Vector in Middle School for English and Math Scores

![Graph showing the autocorrelation vector for English and Math scores over years between classes. The graph displays the correlation between scores with varying years between classes.]
Empirical Distribution of Estimated Teacher Effects in Middle School

SD for English = 0.042
SD for Math = 0.092
Test Scores vs. Teacher Value-Added

Score in Year t vs. Estimated Teacher Value-Added in Year t

Coef. = 0.998 (0.006)
Part I: Bias in VA Estimates
Question 1: Are VA Estimates Unbiased?

- Teachers’ estimated VA may reflect unobserved differences in type of students they get rather than causal impact of teacher

- We evaluate whether VA measures provided unbiased forecasts of teachers’ causal impacts in two ways

- First test: are observable characteristics excluded from VA model are correlated with VA estimates?

 - Ex: parent income is a strong predictor of test scores even conditional on control vector used to estimate VA
 - Do high VA teachers have students from higher-income families?
 - Combine parental background characteristics into a single predicted score using a cross-sectional regression
Predicted Scores based on Parent Chars. vs. Teacher Value-Added

Predicted Score in Year t

Actual Score Predicted Score

Coef. = 0.002

(0.000)
Predicted Score Based on Twice-Lagged Score vs. Current Teacher VA

Predicted Score in Year t

Teacher Value-Added

Year t-2

Year t

Coef. = 0.022

(0.002)
Estimates of Forecast Bias Using Parent Characteristics and Lagged Scores

<table>
<thead>
<tr>
<th>Dep. Var.:</th>
<th>Score in Year t</th>
<th>Pred. Score using Parent Chars.</th>
<th>Score in Year t</th>
<th>Pred. Score using Year t-2 Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td></td>
</tr>
<tr>
<td>Teacher VA</td>
<td>0.998</td>
<td>0.002</td>
<td>0.996</td>
<td>0.022</td>
</tr>
<tr>
<td></td>
<td>(0.0057)</td>
<td>(0.0003)</td>
<td>(0.0057)</td>
<td>(0.0019)</td>
</tr>
<tr>
<td>Parent Chars. Controls</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>6,942,979</td>
<td>6,942,979</td>
<td>6,942,979</td>
<td>5,096,518</td>
</tr>
</tbody>
</table>
VA measures orthogonal to predictors of scores such as parent income

But selection on unobservables could still be a problem (Rothstein 2010)

Ideal test: out-of-sample forecasts in experiments (Kane and Staiger 2008)

- Does a student who is randomly assigned to a teacher previously estimated to be high VA have higher test score gains?

We use teacher switching as a quasi-experimental analog
Teacher Switchers in School-Grade-Subject-Year Level Data

<table>
<thead>
<tr>
<th>School</th>
<th>Grade</th>
<th>Subject</th>
<th>Year</th>
<th>Teachers</th>
<th>Mean Score</th>
<th>Mean Earnings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>math</td>
<td>1992</td>
<td>Smith, Farber, …</td>
<td>-.09</td>
<td>$15K</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>math</td>
<td>1993</td>
<td>Smith, Farber, …</td>
<td>-.04</td>
<td>$17K</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>math</td>
<td>1994</td>
<td>Smith, Farber, …</td>
<td>-.05</td>
<td>$16K</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>math</td>
<td>1995</td>
<td>Mas, Farber, …</td>
<td>0.01</td>
<td>$18K</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>math</td>
<td>1996</td>
<td>Mas, Farber, …</td>
<td>0.04</td>
<td>$17K</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>math</td>
<td>1997</td>
<td>Mas, Farber, …</td>
<td>0.02</td>
<td>$18K</td>
</tr>
</tbody>
</table>

- Smith switches to a different school in 1995; Mas replaces him.
Impact of High Value-Added Teacher Entry on Cohort Test Scores

School-Grade-Cohort Mean Test Score vs. Year Relative to Entry of High Value-Added Teacher

- Score in Current Grade
Impact of High Value-Added Teacher Entry on Cohort Test Scores

School-Grade-Cohort Mean Test Score by Year Relative to Entry of High Value-Added Teacher

Score in Current Grade

Score in Previous Grade
Impact of High Value-Added Teacher Entry on Cohort Test Scores

\[\Delta \text{Score} = 0.035 \quad (0.008) \]
\[\Delta \text{TVA} = 0.042 \quad (0.002) \]

\[p [\Delta \text{score} = 0] < 0.001 \]
\[p [\Delta \text{score} = \Delta \text{TVA}] = 0.34 \]

Number of Events = 1135
Impact of High Value-Added Teacher Exit on Cohort Test Scores

School-Grade-Cohort Mean Test Score

Coefficients

- \(\Delta \text{Score} = -0.045 \) (0.008)
- \(\Delta \text{TVA} = -0.042 \) (0.002)

Statistical Significance

- \(p [\Delta \text{score} = 0] < 0.001 \)
- \(p [\Delta \text{score} = \Delta \text{TVA}] = 0.66 \)

Number of Events

Number of Events = 1115

Graph

- **X-Axis**: Year Relative to Departure of High Value-Added Teacher
- **Y-Axis**: School-Grade-Cohort Mean Test Score
- **Legend**:
 - Score in Current Grade
 - Score in Previous Grade

Graph Details

- The graph shows the mean test score changes over years relative to the departure of a high value-added teacher.
- The solid line represents the mean test score in the current grade, while the dashed line represents the mean test score in the previous grade.
- The data points illustrate the trend from 3 years before the departure to 2 years after.
Impact of Low Value-Added Teacher Entry on Cohort Test Scores

Year Relative to Entry of Low Value-Added Teacher

School-Grade-Cohort Mean Test Score

Δ Score = -0.021
(0.007)
Δ TVA = -0.033
(0.002)

$p [\Delta \text{ score } = 0] < 0.01$
$p [\Delta \text{ score } = \Delta \text{ TVA}] = 0.09$

Number of Events = 1148
Impact of Low Value-Added Teacher Exit on Cohort Test Scores

$$\Delta \text{Score} = 0.034 \quad (0.008)$$

$$\Delta \text{TVA} = 0.034 \quad (0.002)$$

$$p [\Delta \text{score} = 0] < 0.001$$

$$p [\Delta \text{score} = \Delta \text{TVA}] = 0.99$$

Number of Events = 1089
Teacher Switchers Design: Changes in Scores vs. Changes in Mean Teacher VA

Changes in Mean Teacher Value-Added

Coef. = 0.974

(0.033)
Changes in Predicted Scores vs. Changes in Mean Teacher VA

Changes in Mean Teacher Value-Added

-0.1 -0.05 0 0.05 0.1

Coef. = 0.004

(0.005)

Changes in Predicted Scores

Changes in Mean Teacher Value-Added

Score

Predicted Score

Coef. = 0.004

(0.005)
Changes in Other-Subject Scores vs. Changes in Mean Teacher VA
Middle Schools Only

Changes in Other-Subject Scores

Changes in Mean Teacher Value-Added

Coef. = 0.038

(0.083)
Changes in Other-Subject Scores vs. Changes in Mean Teacher VA
Elementary Schools Only

Coef. = 0.237 (0.028)
Estimates of Forecast Bias with Alternative Control Vectors

<table>
<thead>
<tr>
<th>Control Vector</th>
<th>Quasi-Experimental Estimate of Bias (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>2.58 (3.34)</td>
</tr>
<tr>
<td>Student-level lagged scores</td>
<td>4.83 (3.29)</td>
</tr>
<tr>
<td>Non-score controls only</td>
<td>45.39 (2.26)</td>
</tr>
<tr>
<td>No controls</td>
<td>65.58 (3.73)</td>
</tr>
</tbody>
</table>
Rothstein result 1: Students are sorted into classrooms based on pre-determined variables such as grade \(g-2 \) test scores

We confirm this result in our data

Rothstein result 2: Selection on observables is minimal conditional on grade \(g-1 \) controls

Controlling for grade \(g-2 \) score does not affect VA estimates

Consistent with our findings that VA does not predict \(g-2 \) score

Rothstein notes that his findings do not imply bias in VA estimates

But they raise concerns about potential selection on unobservables

Our quasi-experimental teacher switcher tests indicate that selection on unobservables turns out to be modest in practice
Part II: Long-Term Impacts
Fade-Out of Teachers’ Impacts on Test Scores in Subsequent Grades

Impact of Current Teacher VA on Test Scores

Years After Current School Year

Point Estimate

95% CI
Impacts on Outcomes in Adulthood

- Do teachers who raise test scores also improve long-term outcomes?

- Regress residualized long-term outcomes on teacher-level VA estimates

\[Y_{it} = \alpha + \kappa \hat{m}_{jt} + \eta'_{it} \]

- Then validate OLS estimates using cross-cohort switchers design

- Interpretation of these reduced-form coefficients [Todd and Wolpin 2003]

 - Impact of having better teacher, as measured by VA, for a single year during grades 4-8 on earnings

 - Includes benefit of better teachers, peers, etc. in later grades via tracking, as well as any complementarity with future teacher quality
Change in College Attendance Rate Across Cohorts vs. Change in Mean Teacher VA

Coef. = 0.86%

(0.23)
Event Study of Coefficients on College Attendance

Impact of 1 SD Change in Leads or Lags of Mean VA (%)

Coef. at 0 = 1.0 (0.3)

Coef. at +1 equals Coef. at 0: p=0.009
Coef. at -1 equals Coef. at 0: p=0.050
Impacts of Teacher Value-Added on College Attendance

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>College at Age 20 (%)</th>
<th>College at Age 20 (%)</th>
<th>College at Age 20 (%)</th>
<th>College Quality at Age 20 ($)</th>
<th>High Quality College (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7)</td>
<td></td>
</tr>
<tr>
<td>Value-Added</td>
<td>0.82</td>
<td>0.71</td>
<td>0.74</td>
<td>298.63</td>
<td>265.82</td>
<td>266.17</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.07)</td>
<td>(0.06)</td>
<td>(0.09)</td>
<td>(20.74)</td>
<td>(18.31)</td>
<td>(26.03)</td>
<td>(0.05)</td>
<td></td>
</tr>
<tr>
<td>Mean of Dep. Var.</td>
<td>37.22</td>
<td>37.22</td>
<td>37.09</td>
<td>26,837</td>
<td>26,837</td>
<td>26,798</td>
<td>13.41</td>
<td></td>
</tr>
<tr>
<td>Baseline Controls</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Parent Chars. Controls</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lagged Score Controls</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>4,170,905</td>
<td>4,170,905</td>
<td>3,130,855</td>
<td>4,167,571</td>
<td>4,167,571</td>
<td>3,128,478</td>
<td>4,167,571</td>
<td></td>
</tr>
</tbody>
</table>
College Quality at Age 20 ($) vs. Teacher Value-Added (m_{jt})

Coef. = $299^{(21)}$
Earnings at Age 28 vs. Teacher Value-Added

Earnings at Age 28 ($)

Normalized Teacher Value Added (\hat{m}_{jt})

Coef. = 350 (92)
Impact of Teacher Value-Added on Earnings by Age

Impact of 1 SD of VA on Earnings (%)

<table>
<thead>
<tr>
<th>Age of Earnings Measurement</th>
<th>Point Estimate</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Impacts of Teacher Value-Added on Earnings

<table>
<thead>
<tr>
<th>Dependent Variable:</th>
<th>Earnings at Age 28 ($)(1)</th>
<th>Earnings at Age 28 ($) (2)</th>
<th>Earnings at Age 28 ($) (3)</th>
<th>Working at Age 28 (%) (4)</th>
<th>Total Income at Age 28 ($) (5)</th>
<th>Wage growth Ages 22-28 ($) (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teacher VA</td>
<td>349.84</td>
<td>285.55</td>
<td>308.98</td>
<td>0.38</td>
<td>353.83</td>
<td>286.20</td>
</tr>
<tr>
<td></td>
<td>(91.92)</td>
<td>(87.64)</td>
<td>(110.17)</td>
<td>(0.16)</td>
<td>(88.62)</td>
<td>(81.86)</td>
</tr>
<tr>
<td>Mean of Dep. Var.</td>
<td>21,256</td>
<td>21,256</td>
<td>21,468</td>
<td>68.09</td>
<td>22,108</td>
<td>11,454</td>
</tr>
<tr>
<td>Baseline Controls</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Parent Chars. Controls</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lagged Score Controls</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>650,965</td>
<td>650,965</td>
<td>510,309</td>
<td>650,965</td>
<td>650,965</td>
<td>650,943</td>
</tr>
</tbody>
</table>
Women with Teenage Births vs. Teacher Value-Added

Coef. = -0.61% (0.06)
Percent College Graduates in ZIP at Age 28 vs. Teacher Value-Added

Normalized Teacher Value Added (m_{jt})

Coeff. = 0.25% (0.04)
Percent Saving for Retirement at Age 28 vs. Teacher Value-Added

Retirement Savings at Age 28 vs. Teacher Value-Added

Coefficient = 0.55%

(0.16)
Heterogeneity in Impacts of 1 SD of Teacher VA by Demographic Group

<table>
<thead>
<tr>
<th>Dependent Variable:</th>
<th>College Quality at Age 20 ($)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Girls (1)</td>
<td>Boys (2)</td>
<td>Low Income (3)</td>
<td>High Income (4)</td>
<td>Minority (5)</td>
<td>Non-Minority (6)</td>
</tr>
<tr>
<td>Value-Added</td>
<td>290.65 (23.61)</td>
<td>237.93 (21.94)</td>
<td>190.24 (19.63)</td>
<td>379.89 (27.03)</td>
<td>215.51 (17.09)</td>
<td>441.08 (42.26)</td>
</tr>
<tr>
<td>Mean College</td>
<td>27,584</td>
<td>26,073</td>
<td>23,790</td>
<td>30,330</td>
<td>23,831</td>
<td>33,968</td>
</tr>
<tr>
<td>Quality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact as % of Mean</td>
<td>1.05%</td>
<td>0.91%</td>
<td>0.80%</td>
<td>1.25%</td>
<td>0.90%</td>
<td>1.30%</td>
</tr>
</tbody>
</table>
Heterogeneity in Impacts of 1 SD of Teacher VA by Subject

<table>
<thead>
<tr>
<th>Dependent Variable:</th>
<th>College Quality at Age 20 ($)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Elementary School</td>
<td>Middle School</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>Math Teacher</td>
<td>207.81</td>
<td>106.34</td>
<td>265.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value-Added</td>
<td>(21.77)</td>
<td>(28.50)</td>
<td>(43.03)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>English Teacher</td>
<td>258.16</td>
<td>189.24</td>
<td>521.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value-Added</td>
<td>(25.42)</td>
<td>(33.07)</td>
<td>(63.67)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control for Average</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>VA in Other Subject</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Teacher Impacts by Grade

- Reduced-form impacts of having better teachers in each grade include tracking to better teachers in future grades.

- We can net-out the impact of tracking from the reduced-form coefficients by estimating tracking process.

 - Estimate impact of current teacher VA on VA of future teachers.

 - Subtract out impacts of future teachers.
Effect of Value-Added on Earnings by Grade

Impact of 1 SD of VA on College Quality ($)

Reduced-Form Coefficients

95% CI for Reduced-Form Net of Teacher Tracking

Effect of Value-Added on Earnings by Grade
Policy Proposal 1: Deselection of Low VA Teachers

What are the gains from replacing teachers with VA in bottom 5% with teachers of median quality (Hanushek 2009)?
Use estimates to evaluate gains from improving teacher quality

Measure impact of teacher VA on present value of lifetime earnings

Assumptions

- Ignore general equilibrium effects and non-monetary gains
 [Oreopoulos and Salvanes 2011, Heckman 2000]

- Constant percentage impact on earnings over life

- Life-cycle earnings follows cross-sectional life-cycle path in 2010

- 2% wage growth with 5% discount rate back to age 12

 Undiscounted lifetime earnings gains are roughly 5 times larger
Consider replacing teachers in the bottom 5% of VA distribution with teachers of average quality (Hanushek 2009)

Select on true VA \rightarrow NPV gain for a class of average size: $407,000$

In practice, gains are reduced by two factors

- Estimation error in VA
- Drift in VA over time
Deselecting Teachers on the Basis of Value-Added

Teacher Effect on Test Scores

Population

Observed Below 5th Percentile After 3 Years
Deselecting Teachers on the Basis of Value-Added

Only 3% of teachers deselected using estimated VA with three years of data are above average in true VA.
Earnings Impact in First Year After Deselection Based on Estimated VA

Present Value Gain from Deselection on True VA = $406,988

Lifetime Earnings Gain Per Class ($1000s)

Number of Years Used to Estimate VA

Earnings Impact in First Year After Deselection Based on Estimated VA

Present Value Gain from Deselection on True VA = $406,988

Lifetime Earnings Gain Per Class ($1000s)

Number of Years Used to Estimate VA
Deselection Based on Estimated VA After 3 Years:
Earnings Impacts in Subsequent Years

Average 10 Year Gain = $184,234

Lifetime Earnings Gain Per Class ($1000s)

School Years Since Teacher Was Hired
Average 10 Year Gain = $184,234

Average 10 Year Gain = $246,744

Deselected on Estimated VA in Year 4
Deselected on True VA in Year 4

Earnings Impact Over Time
Rothstein (2013) estimates that deselecting bottom 5% of teachers based on VA would require a salary increase of $700 for all teachers.

Avg. gain from deselection policy is $184,000 \times 5\% = $9,250

Gain 10 times as large as cost \rightarrow VA could be a useful policy tool.

Key concern: gains may be eroded when VA is actually used.

Using VA in high-stakes evaluation could lead to teaching to the test or cheating [Jacob 2005, Neal and Schanzenbach 2010, Barlevy and Neal 2012].

Broader policy lesson: improving teacher quality, whether through VA or other metrics, likely to have very large returns.
Policy Proposal 2: Retention of High VA Teachers

What are the gains from increasing retention of high value-added teachers by paying salary bonuses?
Retaining a teacher whose VA is at the 95th percentile (based on 3 years of data) for an extra year would generate PV earnings gain of $266K.

Clotfelter et al. (2008) analyze impacts of bonus payments to teachers.

$1,800 bonus would raise teacher retention by 1.5 percentage points → earnings gain of $3,200.

Net return relatively small because most of the bonus payments go to teachers who would not have left anyway.

Have to pay bonuses to 60 teachers to retain 1 teacher on average.
Conclusion

- Further work needed to assess value-added as a policy tool
- Using VA measures in high-stakes evaluation could induce negative behavioral responses such as teaching to the test or cheating
- Errors in personnel decisions must be weighed against mean benefits
- Results highlight large potential returns from developing policies to improve teacher quality
- From a purely financial perspective, parents should be willing to pay about $7,000/year to get a 1 SD higher VA teacher for their child
Appendix Figures
Rankings of Colleges Based on Earnings at Ages 23 and 27 vs. Age 32

Percentile Ranking Based on Earnings at Age 23 or 27

Percentile Ranking of College Based on Earnings at Age 32

Rankings of Colleges Based on Earnings at Ages 23 and 27 vs. Age 32
Correlation of College Rankings Based on Earnings at Age 32
With Rankings Based on Earnings at Earlier Ages
Correlation of Individual Earnings with Earnings 12 Years Later, by Age
College Attendance

Percent Attending College at Age 20

Test Score (SD)

0% 20% 40% 60% 80%

No Controls With Controls
College Quality

College Quality at Age 20 ($1000)

Test Score (SD)

-2 -1 0 1 2

No Controls With Controls

College Quality at Age 20 ($1000) vs Test Score (SD)
Percent of Females with Teenage Birth

Test Score (SD)